garron.us > Cube > BLD > r2
General r2 for BLD
Lucas Garron; February 10-24, 2008
Edges/MidgesWingsX-CentersT-Centers"Oblique" Centers
DirectionsNotationLabelingSupercubesAlgorithmsBe freeParityNotes

In June 2007, Stefan Pochmann published a fantastic method for 3x3x3 BLD: M2R2. R2 turns out to be a bit cumbersome because half the pieces in the orbit are located in the buffer slice. M2, however, is a brilliant EP method, and Erik soon applied it to 4x4x4 edges (which is actually how Pochmann developed M2), using the r slice (why r and not l? most cubers twist more with the right hand and hold the cube with the left, so r2 is easier/faster).
However, it somewhat languished there. I figured out an ugly way to do r2 for x-centers, by bringing the center to Ful, and gave up because it was too inefficient. Then, I tried to find better ways to shoot to Ubr, and eventually developed the following algorithms, which work well for any piece type (except corners) on a cube of any size.
Directions / Method
I won't give full, explicit directions for applying these "algorithms", but simply:

Notation

Piece Labeling

Supercubes
Exactly the same algs apply to supercubes. I have purposely excluded algs that do not work on supercubes (or would involve modification/etc on supercubes), except where a significantly shorter alternative solution exists for non-supercubes. These are marked with an adjacent arrow: (↑) (NSFSC is too long for denoting algs that are not super-safe...). Simply avoid these, and use supercube-safe corner algs (and find some way to deal with middle centers and parities).
"Algorithms"
These algorithms should mainly be intuitive and easy to understand; you should actually try to see how they work and find all of them by yourself -afterwards, you can look here to see if I have any better algs ones for your worst cases. I have tried to avoid putting in cube rotations or extra moves to present the method in its most direct, simple form. Note that all algs effectively cycle the buffer (DFR-ish) to the target (the current piece in the cycle, which is at the buffer) to the helper (UBR-ish) back to the buffer, followed by r2/m2 (which sometimes cancels with the final move of the commutator). It's a pseudo-2-cycle achieved by turning the entire r/m-slice to utilize a swap of the buffer and helper and generate a "2-swap" (all these are self-inverses, except for targets on the r/m-slice).
So that you don't have to search below to find all types, here is a list of all commutator types/ideas used below:
Be free
Don't restrain yourself to these "algs". This is essentially a consistent, slightly lenghty commutator for every pair of pieces. You can substitute a commutator at any point (but be careful with pieces on the r slice when it's off). If a pair in a cycle is (DFr>)UFr>BRu, [r,ULU'] works perfectly well (note that r-slice pieces are the worst, but exchangeable with the buffer and thus make easy comms). See here.
Also, these are just my commutators, the ones I could think of that are easy to visualize and use; there are probably a few good unexplored variations, so don't adopt any of mine without a little care.
A good suggestion that I got from Daniel Beyer (regarding wings) is to use r2 for pieces on L and R, but commutators instead of long algs for pieces on M-slices. Mike Hughey adopted this and is doing well with it (he got 12 sucesses in a row after trying it!). Do whatever satisfies your desire and for ease, accuracy, and speed...

Parity


Miscelaneous Notes

3x3x3 Edges / Big(Odd)-Cube Midges

TargetAlgorithmCompact
UFU2m'U2m'(↑)
m'U2mU2m'U2mU2m2'
[U2,m']m2'
[m',U2][m',U2]m2'
FUDm'UR2U'mUR2U'D'm2'
FeRUR'e'RU'R'F'm2'
[D:[m',[U:R2]]]m2'
[F:[e,[R:U]]]m2'
ULLU'L'Um2'U'LUL'[[L,U']:m2']
LUBL'B'm2'BLB'[[B:L']:m2']
UBm2'm2'
BUUR'U'B'R2Bm2'B'R2BURU'
UB'RU'Bm2'B'UR'BU'
[[U:R'][B':R2]:m2']
[UB'RU'B:m2']
URR'URU'm2'UR'U'R[[R',U]:m2']
RUB'RBR'm2'RB'R'B[[B',R]:m2']
FLU'L'Um2'U'LU[[U':L']:m2']
LFBL2B'm2'BL2B'[[B:L2]:m2']
LBL'BLB'm2'BL'B'L
mULU'm2'UL'U'm'
[[L',B]:m2']
[m[U:L]:m2']
BLU'LUm2'U'L'U[[U':L]:m2']
BRUR'U'm2'URU'[[U:R']:m2']
RBRB'R'Bm2'B'RBR'
mU'R'Um2'U'RUm'
[[R,B']:m2']
[m[U':R']:m2']
RFB'R2'Bm2'B'R2B[[B':R2']:m2']
FRURU'm2'UR'U'[[U:R]:m2']
DF--
FD--
DLU'L2Um2'U'L2U[[U':L2]:m2']
LDBLB'm2'BL'B'[[B:L]:m2']
DBmU2mU2(↑)
m2'U2m'U2mU2m'U2m
m2'[m',U2]
m2'[U2,m'][U2,m']
BDm2'DUR2U'm'UR2U'mD'
m2'FRUR'eRU'R'e'F'
m2'[D:[[U:R2],m']]
m2'[F:[[R:U],e]]
DRUR2U'm2'UR2U'[[U:R2]:m2']
RDB'R'Bm2'B'RB[[B':R']:m2']


Wings

TargetAlgorithmCompact
UFll'UR'U'B'R2Br2B'R2BURU'l
UL'U'U'LUr2U'L'Ur2ULU'r2
[l'[U:R'][B':R2]:r2]
[[U:L']:[[U':L],r2]]r2
UFrDrUR2U'r'UR2U'D'r2
FdRUR'd'RU'R'F'r2
[D:[r,[U:R2]]]r2
[F:[d,[R:U]]]r2
ULbLU'L'Ur2U'LUL'[[L,U']:r2]
ULfBL'B'r2BLB'[[B:L']:r2]
UBrr2r2
UBlUR'U'B'R2Br2B'R2BURU'
UB'RU'Br2B'UR'BU'
[[U:R'][B':R2]:r2]
[UB'RU'B:r2]
URfR'URU'r2UR'U'R[[R',U]:r2]
URbB'RBr2B'R'B[[B':R]:r2]
FLuU'L'Ur2U'LU[[U':L']:r2]
FLdBL2B'r2BL2B'[[B:L2]:r2]
BLuL'BLB'r2BL'B'L
r'ULU'r2UL'U'r
[[L',B]:r2]
[r'[U:L]:r2]
BLdU'LUr2U'L'U[[U':L]:r2]
BRuUR'U'r2URU'[[U:R']:r2]
BRdRB'R'Br2B'RBR'
r'U'R'Ur2U'RUr
[[R,B']:r2]
[r'[U':R']:r2]
FRuB'R2Br2B'R2B[[B':R2]:r2]
FRdURU'r2UR'U'[[U:R]:r2]
DFr--
DFll2UR'U'B'R2Br2B'R2BURU'l2[l2[U:R'][B':R2]:r2]
DLfU'L2Ur2U'L2U[[U':L2]:r2]
DLbBLB'r2BL'B'[[B:L]:r2]
DBllUR'U'B'R2Br2B'R2BURU'l'[l[U:R'][B':R2]:r2]
DBrr2DUR2U'rUR2U'r'D'
r2FRUR'dRU'R'd'F'
r2[D:[[U:R2],r]]
r2[F:[[R:U],d]]
DRbUR2U'r2UR2U'[[U:R2]:r2]
DRfB'R'Br2B'RB[[B':R']:r2]


X-Centers

TargetAlgorithmCompact
Ubrr2r2
UrfU'D'l2Dr2D'l2Dr2Ur2
D2y'r'UrU'l2Ur'U'rl2yD2r2
[U':[[D':l2],r2]]r2
[D2y':[[r',U],l2]]r2
UfllFU'l'Ur2U'lUr2F'l'r2[lF:[[U':l'],r2]]r2
UlblU'l'Ur2U'lUl'
b'Rbr2b'R'b
bLb'r2bL'b'
[[l,U']:r2]
[[b':R]:r2]
[[b:L]:r2]
FurF'U'l'Ur2U'lUr2Fr2[F':[[U':l'],r2]]r2
FrdF2U'l'Ur2U'lUr2F2r2[F2:[[U':l'],r2]]r2
FdlFU'l'Ur2U'lUr2F'r2[F:[[U':l'],r2]]r2
FluU'l'Ur2U'lU[[U':l']:r2]
LufbL'b'r2bLb'[[b:L']:r2]
LfdbL2b'r2bL2b'[[b:L2]:r2]
LdbL2bL'b'r2bLb'L2
r'uL2u'r2uL2u'r
[L2[b:L']:r2]
[r'[u:L2]:r2]
LbuLbL'b'r2bLb'L'
D'b'Dr2D'bD
[[L,b]:r2]
[[D':b']:r2]
BulBU'lUr2U'l'Ur2B'r2[B:[[U':l],r2]]r2
BldU'lUr2U'l'U[[U':l]:r2]
BdrB'U'lUr2U'l'Ur2Br2[B':[[U':l],r2]]r2
BruB2U'lUr2U'l'Ur2B2r2[B2:[[U':l],r2]]r2
RubR2b'R'br2b'RbR2
rd'R2dr2d'R2dr'
[R2[b':R']:r2]
[r[d':R2]:r2]
RbdRb'R'br2b'RbR'
D'bDr2D'b'D
[[R,b']:r2]
[[D':b]:r2]
Rdfb'R'br2b'Rb[[b':R']:r2]
Rfub'R2br2b'R2b[[b':R2]:r2]
Dfr--
DrbD'r2U'l2Ur2U'l2UDr2
U2yUr2U'r2l2r2Ur2U'l2y'U2r2
[D':[r2,[U':l2]]]r2
[U2y:[[U,r2],l2]]r2
Dbll'FU'l'Ur2U'lUr2F'lr2[l'F:[[U':l'],r2]]r2
DlfU'l2Ur2U'l2U[[U':l2]:r2]


T-Centers

TargetAlgorithmCompact
Ubm2'm2'
Urr'UrU'm2'Ur'U'r
sb'R'bm2'b'Rbm2's'm2'
[[r',U]:m2']
[s:[[b':R'],m2']]m2'
Uff2m'B2mf2m'B2m'
md2m'U2md2m'U2m2'
U'r'UUrU'm2'Ur'U'm2'U'rUm2'
[f2,[m':B2]]m2'
[[m:d2],U2]m2'
[[U':r']:[[U:r],m2']]m2'
UllU'l'Um2'U'lUl'
s'bLb'm2'bL'b'm2'sm2'
[[l,U']:m2']
[s':[[b:L],m2']]m2'
FuFUrU'r'm2'rUr'U'm2'F'm2'
Dm'Ur2U'mUr2U'D'm2'
FferUr'e'rU'r'f'F'm2'
[F:[[U,r],m2']]m2'
[D:[m',[U:r2]]]m2'
[Ff:[e,[r:U]]]m2'
FrUrU'r'm2'rUr'U'[[U,r]:m2']
FdF'UrU'r'm2'rUr'U'm2'Fm2'[F':[[U,r],m2']]m2'
FlU'l'Ulm2'l'U'lU[[U',l']:m2']
LubL'b'm2'bLb'[[b:L']:m2']
LfbL2b'm2'bL2b'[[b:L2]:m2']
LdbLb'm2'bL'b'[[b:L]:m2']
LbL'bLb'm2'bL'b'L
D'b'Dm2'D'bD
[[L',b]:m2']
[[D':b']:m2']
BuB'Ur'U'm2'UrU'm2'Bm2'[B':[[U:r'],m2']]m2'
BlU'lUm2'U'l'U[[U':l]:m2']
Bdm2'DUr2U'm'Ur2U'mD'
BUr'U'rm2'r'UrU'm2'B'm2'
m2'FfrUr'erU'r'e'f'F'
m2'[D:[[U:r2],m']]
[B:[[U,r'],m2']]m2'
m2'[Ff:[[r:U],e]]
BrUr'U'm2'UrU'[[U:r']:m2']
Rub'Rbm2'b'R'b[[b':R]:m2']
RbRb'R'bm2'b'RbR'
D'bDm2'D'b'D
[[R,b']:m2']
[[D':b]:m2']
Rdb'R'bm2'b'Rb[[b':R']:m2']
Rfb'R2bm2'b'R2b[[b':R2]:m2']
Df--
DrUr2U'm2'Ur2U'[[U:r2]:m2']
DbmB2mf2m'B2mf2
m2'U2md2m'U2md2m'
D'rDUrU'm2'Ur'U'm2'D'r'Dm2'
m2'[[m':B2],f2]
m2'[U2,[m:d2]]
[[D':r]:[[U:r],m2']]m2'
DlU'l2Um2'U'l2U[[U':l2]:m2']


"Oblique" Centers

TargetAlgorithmCompact
Ubrr2r2
Urfρ'UρU'r2Uρ'U'ρ[[ρ',U]:r2]
UfllFUρU'r2Uρ'U'r2F'l'r2[lF:[[U:ρ],r2]]r2
UlbλU'λ'Ur2U'λUλ'[[λ,U']:r2]
FurFUρU'r2Uρ'U'r2F'r2
FφdρUρ'd'ρU'ρ'φ'F'r2
[F:[[U:ρ],r2]]r2
[Fφ:[d,[ρ:U]]]r2
FrdUρU'r2Uρ'U'[[U:ρ]:r2]
FdlFU'λ'Ur2U'λUr2F'r2[F:[[U':λ'],r2]]r2
FluU'λ'Uλr2λ'U'λU[[U',λ']:r2]
LufβL'β'r2βLβ'[[β:L']:r2]
LfdβL2β'r2βL2β'[[β:L2]:r2]
LdbβLβ'r2βL'β'
r'τL2τ'r2τL2τ'r
[[β:L]:r2]
[r':[[τ:L2]:r2]]
LbuL'βLβ'r2βL'β'L
D'β'Dr2D'βD
[[L',β]:r2]
[[D':β']:r2]
BulB'Uρ'U'r2UρU'r2Br2[B':[[U:ρ'],r2]]r2
Bld[[U'λ]:r2][[U'λ]:r2]
BdrU'U'λUr2U'λ'Ur2Ur2[U':[[U':λ],r2]]r2
BruUρ'U'r2UρU'[[U:ρ']:r2]
Rubβ'RβR'r2Rβ'R'β[[β',R]:r2]
RbdRβ'R'βr2β'RβR'
r'τ'R'τr2τ'Rτr
D'βDr2D'β'D
[[R,β']:r2]
[r':[[τ':R']:r2]]
[[D':β]:r2]
Rdfβ'R'βr2β'Rβ[[β':R']:r2]
Rfuβ'R2βR2r2R2β'R2β[[β',R2]:r2]
Dfr--
DrbUρ2U'ρ2r2ρ2Uρ2U'[[U,ρ2]:r2]
Dbll'FU'λ'Uλr2λ'U'λUr2F'lr2[l'F:[[U',λ'],r2]]r2
DlfUλ2U'λ2r2λ2Uλ2U'[[U,λ2]:r2]